3.482 \(\int \frac{x^6}{\sqrt{-1+x^3}} \, dx\)

Optimal. Leaf size=153 \[ \frac{16}{55} \sqrt{x^3-1} x+\frac{2}{11} \sqrt{x^3-1} x^4-\frac{32 \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{55 \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}} \]

[Out]

(16*x*Sqrt[-1 + x^3])/55 + (2*x^4*Sqrt[-1 + x^3])/11 - (32*Sqrt[2 - Sqrt[3]]*(1
- x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/
(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(55*3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x
)^2)]*Sqrt[-1 + x^3])

_______________________________________________________________________________________

Rubi [A]  time = 0.112022, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154 \[ \frac{16}{55} \sqrt{x^3-1} x+\frac{2}{11} \sqrt{x^3-1} x^4-\frac{32 \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{55 \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}} \]

Antiderivative was successfully verified.

[In]  Int[x^6/Sqrt[-1 + x^3],x]

[Out]

(16*x*Sqrt[-1 + x^3])/55 + (2*x^4*Sqrt[-1 + x^3])/11 - (32*Sqrt[2 - Sqrt[3]]*(1
- x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/
(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(55*3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x
)^2)]*Sqrt[-1 + x^3])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 5.90734, size = 122, normalized size = 0.8 \[ \frac{2 x^{4} \sqrt{x^{3} - 1}}{11} + \frac{16 x \sqrt{x^{3} - 1}}{55} - \frac{32 \cdot 3^{\frac{3}{4}} \sqrt{\frac{x^{2} + x + 1}{\left (- x - \sqrt{3} + 1\right )^{2}}} \sqrt{- \sqrt{3} + 2} \left (- x + 1\right ) F\left (\operatorname{asin}{\left (\frac{- x + 1 + \sqrt{3}}{- x - \sqrt{3} + 1} \right )}\middle | -7 + 4 \sqrt{3}\right )}{165 \sqrt{\frac{x - 1}{\left (- x - \sqrt{3} + 1\right )^{2}}} \sqrt{x^{3} - 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**6/(x**3-1)**(1/2),x)

[Out]

2*x**4*sqrt(x**3 - 1)/11 + 16*x*sqrt(x**3 - 1)/55 - 32*3**(3/4)*sqrt((x**2 + x +
 1)/(-x - sqrt(3) + 1)**2)*sqrt(-sqrt(3) + 2)*(-x + 1)*elliptic_f(asin((-x + 1 +
 sqrt(3))/(-x - sqrt(3) + 1)), -7 + 4*sqrt(3))/(165*sqrt((x - 1)/(-x - sqrt(3) +
 1)**2)*sqrt(x**3 - 1))

_______________________________________________________________________________________

Mathematica [C]  time = 0.12806, size = 91, normalized size = 0.59 \[ \frac{2 \left (3 x \left (5 x^6+3 x^3-8\right )+16 i 3^{3/4} \sqrt{(-1)^{5/6} (x-1)} \sqrt{x^2+x+1} F\left (\sin ^{-1}\left (\frac{\sqrt{-i x-(-1)^{5/6}}}{\sqrt [4]{3}}\right )|\sqrt [3]{-1}\right )\right )}{165 \sqrt{x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[x^6/Sqrt[-1 + x^3],x]

[Out]

(2*(3*x*(-8 + 3*x^3 + 5*x^6) + (16*I)*3^(3/4)*Sqrt[(-1)^(5/6)*(-1 + x)]*Sqrt[1 +
 x + x^2]*EllipticF[ArcSin[Sqrt[-(-1)^(5/6) - I*x]/3^(1/4)], (-1)^(1/3)]))/(165*
Sqrt[-1 + x^3])

_______________________________________________________________________________________

Maple [A]  time = 0.025, size = 139, normalized size = 0.9 \[{\frac{2\,{x}^{4}}{11}\sqrt{{x}^{3}-1}}+{\frac{16\,x}{55}\sqrt{{x}^{3}-1}}+{\frac{-48-16\,i\sqrt{3}}{55}\sqrt{{\frac{-1+x}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}}\sqrt{{\frac{1}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}} \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) }}\sqrt{{\frac{1}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}} \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) }}{\it EllipticF} \left ( \sqrt{{\frac{-1+x}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}},\sqrt{{\frac{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{{x}^{3}-1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^6/(x^3-1)^(1/2),x)

[Out]

2/11*x^4*(x^3-1)^(1/2)+16/55*x*(x^3-1)^(1/2)+32/55*(-3/2-1/2*I*3^(1/2))*((-1+x)/
(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((
x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((-1+x)/
(-3/2-1/2*I*3^(1/2)))^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{\sqrt{x^{3} - 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(x^3 - 1),x, algorithm="maxima")

[Out]

integrate(x^6/sqrt(x^3 - 1), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x^{6}}{\sqrt{x^{3} - 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(x^3 - 1),x, algorithm="fricas")

[Out]

integral(x^6/sqrt(x^3 - 1), x)

_______________________________________________________________________________________

Sympy [A]  time = 2.24828, size = 27, normalized size = 0.18 \[ - \frac{i x^{7} \Gamma \left (\frac{7}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{7}{3} \\ \frac{10}{3} \end{matrix}\middle |{x^{3}} \right )}}{3 \Gamma \left (\frac{10}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**6/(x**3-1)**(1/2),x)

[Out]

-I*x**7*gamma(7/3)*hyper((1/2, 7/3), (10/3,), x**3)/(3*gamma(10/3))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{\sqrt{x^{3} - 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(x^3 - 1),x, algorithm="giac")

[Out]

integrate(x^6/sqrt(x^3 - 1), x)